

Daily Tutorial Sheet-1 Level-1

1.(B) Work done (W) =
$$-p_{ext}(V_2 - V_1)$$

=
$$-3 \times (6-4) = -6 L$$
 atm
= $-6 \times 101.32 J$ (:. 1L atm = 101.32 J)
= $-607.92 \approx -608 J$

- **2.(D)** In the adiabatic process no heat enters or leaves the system i.e., q = 0.
- **3.(B)** For an isothermal process $\Delta T = 0$ and $\Delta E = 0$ and $q \neq 0$.

4.(A)
$$V_1 = 100 \text{ mL}$$
; $V_2 = 250 \text{ mL}$

Pressure $p = 2 atm \text{ or } 2 \times 1.01 \times 10^5 \text{ Nm}^{-2}$

Work done by the gas $W = p\Delta V$ or $p(V_2 - V_1)$

Put the value in given formula

$$W = 2 \times 1.01 \times 10^{5} \left(0.250 \times 10^{-3} - 0.100 \times 10^{-3} \right) = 2 \times 1.01 \times 10^{5} \times 0.15 \times 10^{-3} = 30.30 \, J$$

5.(A) From first law of thermodynamic.

$$\Delta E = q + W$$
 Given, $q = +300$ cal

(\therefore Heat is absorbed)

$$W = -500 \text{ cal}$$

(: Work done on surroundings)

.
$$\Delta E = q + W = 300 + (-500) = -200 \text{ cal}$$

6.(B) A \rightarrow B, Δ H = +24 kJ/mol

$$\Rightarrow$$
 $H_B - H_A = +24$

$$B \rightarrow C$$
, $\Delta H = -18 \text{ kJ} / \text{mol}$

$$\Rightarrow$$
 $H_C - H_B = -18$

$$\Rightarrow$$
 $H_B - H_C = +18$

From Equations (i) and (ii), we have

$$H_{\rm C} - H_{\rm A} = 6$$

$$H_B > H_C > H_A$$

- **7.(C)** This is based on Joule-Thomson effect.
- **8.(B)** Molar heat capacity Heat required to raise the temperature of 1 mole of a substance by 1°C is called molar heat capacity.
- **9.(A)** Work done

$$(W) = -P_{ext}(V_2 - V_1) = -1 \times 10^5 \ Nm^{-2} \times (1 \times 10^{-2} - 1 \times 10^{-3}) m^3 \\ = -10^5 \times 9 \times 10^{-3} J \\ = -900 \ J \\ = -10^5 \times 9 \times 10^{-3} J \\ = -900 \ J \\ = -10^5 \times 9 \times 10^{-3} J \\ = -10^5 \times 10^{$$

- **10.(B)** (A) Temperature constant
- **(B)** Pressure constant
- (C) Heat exchange is zero
- (**D**) Volume constant

11.(C) Heat exchange is zero

12.(B)
$$\Delta H = \Delta U + \Delta n_{\sigma}RT$$

$$\Delta U = -3271 + \frac{3}{2} \times 8.314 \times 10^{-3} \times 300$$

$$\Delta U = -3267.25$$

Now for 1.5 mole

$$\Delta U = -3267.25 \times 1.5 = -4900.88\,J$$

13.(B)
$$W = -P_{ext} (V_2 - V_1) = -2 \times 20 = -40 \text{ lt} - \text{atm}$$
$$= -40 \times 101.3 \text{ J} = -4052 \text{ J}$$

$$\Delta U = q + W = 10000 - 4052 = 5948J$$

14.(A)
$$V = \frac{nR}{P} \cdot T$$

$$\Rightarrow \log V = \log T + \log \frac{nR}{p}$$

$$\Rightarrow$$
 $y = mx + C$

Where
$$m = 1 \implies \theta = 45^{\circ}$$

$$C = log \frac{nR}{p} = log \frac{100 \times 0.0821}{8.21} = 0$$

$$\textbf{15.(B)} \quad W = -\,nRT\,\ell n\frac{P_1}{P_2} = -\,10\times300\times8.314\,\ell n\frac{10}{1} = -\,57441J$$

$$W = mgh$$

$$\Rightarrow \qquad m = \frac{57441}{9.8 \times 100} = 58.6 \, kg$$

VMC | Chemistry 40 Thermodynamics